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OF THE CELL DISCRETIZATION ALGORITHM 

FOR SOLVING ELLIPTIC PROBLEMS 
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ABSTRACT. Error estimates for the cell discretization algorithm are obtained for 
polynomial bases used to approximate both Hk(Q) and analytic solutions to 
selfadjoint elliptic problems. The polynomial implementation of this algorithm 
can be viewed as a nonconforming version of the h-p finite element method 
that also can produce the continuous approximations of the h-p method. The 
examples provided by our experiments provide discontinuous approximations 
that have errors similar to the finite element results. 

INTRODUCTION 

This paper concerns a nonconforming version of the finite element method 
for approximating solutions of elliptic partial differential equations, where the 
requirement that an approximation be continuous is weakened. We discuss the 
cell discretization algorithm (abbreviated as CDA) formulated by Greenstadt [9, 
12, 15-181; the domain of a problem is partitioned into cells, approximations 
are made on each cell, and the approximations are forced to be weakly continu- 
ous across the boundaries of each cell using a method called moment collocation. 
Convergence of the Greenstadt method occurs in quite general situations [24, 
25]. The cells do not necessarily diminish in size, and approximations to the so- 
lution on each cell can be constructed using any suitably smooth basis. Babuska 
uses a method similar to moment collocation to make finite element approxima- 
tions match the boundary data in elliptic problems [2]. See also [8]. Although 
our error estimates are somewhat different, we give a polynomial implementa- 
tion that is essentially the primal hybrid finite element method of Raviart and 
Thomas [21], who use finite element approximations that may be discontinuous, 
yet they converge to a solution as the size of the mesh of the finite element grid 
becomes small. 

In ? 1 we extend the general results for selfadjoint problems presented in [25] 
in several ways that are of use later in the paper. Section 2 presents a polynomial 
implementation of the algorithm for domains in R2 and JR3. This implemen- 
tation contains a version of the h-p finite element method [3-7, 20] as a special 
case. We give error estimates that are expressed in terms of the degree of a poly- 
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nomial approximation on each cell, the number of moment collocations used to 
enforce weak continuity, and the maximum diameter of a cell. In ?3 we discuss 
the linear algebra used in our algorithm and present an example that illustrates 
the theoretical results. We show that we can relax the requirement that solutions 
be continuous across cell interfaces and still obtain errors similar to continuous 
approximations. Our results provide useful information concerning the selec- 
tions of an appropriate number of moment collocations, basis functions, and 
cell size in the cell discretiation method. 

1. DESCRIPTION OF THE PROBLEM AND CONVERGENCE RESULTS 

For completeness, we give the following definitions and results from [24, 25]. 
Let Q be a bounded domain in Rk with boundary F. We approximate the 

solution of an elliptic selfadjoint problem of the form 

(1.la) Eu = f, 
(1.lb) u = g onr, 

where the operator E is defined by 
K 

Eu =-E Di(Aij(x)Dju) + Ao(x)u, 
i,j 

with Di representing partial differentiation with respect to xi. 
We use the following variational form of (1. la) and (1. lb): 
Define 

a(u, v)=J (Ai(x)DiUDIv+Ao(x)uv) dx. 

We wish to approximate u E H1 (Q) satisfying ulr = g such that 

a(u, v) = (f, v) 

for all v E Ho' (Q), the subspace of functions in H1 (Q) whose traces are equal 
to zero on F. The L2 inner product over Q is denoted by (*, *), with norm 
denoted 11 *l E. 

The cell discretization algorithm supposes that the domain Q can be parti- 
tioned into subdomains with Lipschitz continuous boundaries that are piecewise 
C1 (LPC1); such subdomains are called cells. Suppose there are N cells Qi, 
with Qfi n Qj = 0 if i $ j and Q = Ui=1 Qfi. The exterior is Qo = RK\Q 

The Hilbert spaces we use are the following: 

H1(Qi) =_ {u: Qi -R: u E L2(Q); Dju E L2(Q) forj= 1, ..., K}, 
where partial derivatives Dju are distribution derivatives with respect to xj. 
The space H1 (Qi) has inner product 

K 

(u, v)1,i = Z(Dju, Djv)i + (u, v)i, 
j=1 

where ( , )i represents the L2(Q4) inner product, with the norm expressed 
as 11 IIo i. The norm on H1(Qi) is denoted 11 1,i. The H1 inner product 
and norm over Q2 rather than Qi are represented by ( *, * ) 1, Q and 11 * 1I1 i Q . 



THE CONVERGENCE RATE OF THE CELL DISCRETIZATION ALGORITHM 1399 

Approximations are in space 

H-{u E L2(Q) : Ulni E Hl (Qi); i = 1,.., N}J. 

The Hilbert space H has inner product 

N 

(U, V)H- (U, V) 1 i, 
i=l1 

with norm represented by 11 IIH. 
Let Fij = Qi n Qj . Assume that Fij is the finite union of C1 patches. To 

simplify notation, we refer to all such patches as Fij, although there may be 
more than one C1 component. Fio is a boundary segment between Qi and 
no. (See [25] for a precise definition of these terms.) The inner product for 
L2(11i) is denoted by ( j, )j, with norm represented as liii. 

We denote by Yij the trace operator restricting u I to its values on Fij. 
We regard it as a bounded linear operator from HI (Qi) to L2(F1i) [19]; there 
are constants C1j such that for any w E H, IIyiy(w) Iij < CejIIwII ,i . Since we 
are concerned with estimates in terms of IIyi Y(w) Iij rather than the H 12 (Ffi) 
norm of yij (w) required by full use of the trace theorem [19], the constants 
C1j can be explicitly obtained for Qi with simple kinds of boundaries, and we 
describe some such C1j in this paper. 

For each Fij, choose IcoJIo,,_ to be functions in HI!2(Ff1) that are a 
Schauder basis for L2 (Ffi). For any h E L2(Fij), there are coefficients dk 

such that h = Zk-1 dkao'j. For any n, let $i'(h) _kn+l dk4'o . For any 

e > 0, there is some N(h, e) such that n > N(h, e) implies jj9W11(h)jIjI <e. 
Weak continuity of approximations in H across interfaces Fij is enforced 

by Greenstadt's moment collocation method: 
For u E H, we define the kth moment of u on Fij to be 

Mk(U) (Yij (U) I Coj )ij 

We require that the moments of an approximation u be equal on interfaces 
Fij in the following way. 

Let N1 be the number of interfaces Fij. We will denote by [n] a multi- 
index, an N1-vector of nonnegative integers (... , nij, ...). A partial order is 
[n'] > [n] if and only if for any ij, n' > nij. We say that [nk] ) [x] if 

[nk] < [nk+l] and infij{nkJ} - oc as k - oc. 
Set 

G[n] {_ u E H: for any ij, ij = 1,..., N1 and for any 

k < nij, we have Mk(U) = Mk (U)} 

In this case, [n] is the multi-index described above, with all nio = 0, where 
the nio refer to the Fio. Thus, G[n] is the set of functions u in H such 
that on any internal interface Fij, yj (u) - yji (u) is L2(Fij)-orthogonal to wo/k, 
k = 1 , . .. , n1j . This gives a notion of weak continuity across interfaces called 
moment collocation: Define 

Go[n] = {u E G[n]: for any i, for any k < nio io(u) = o}. 
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Thus, Go[n] is the set of functions in G[n] that are weakly 0 on the external 
interfaces Fi0 making up F. 

Our approximations of solutions for problems with Dirichlet boundary data 
g are in 

D[n]-{u E G[n]: for any Fio : o and k < nio, Mk(U) = (g, 4ki)fO}. 

For each ith cell, choose any Schauder basis {Bk} for H1 (Qi) . For any v 
in HI(Qi), there are bk such that EZL IbkBk = v; let v. ?m= MbkBk- 
Let em(v) denote the orthogonal projection (in the H (Qi) inner product) of 
v onto the HI (Qi)-orthogonal complement of the span of {Bli, Bi, ..., Bi}. 
Thus, 

@1m (V ,m) = 0; 1M'(V) =m @(v V-V.m) 

and 

Il@'m (v)lll,i < liv m ,mll,i = k kE bBk , LIm II''(v) 1,,i = i0 
k=m+l 1, i 

These properties of @m are independent of [n]. 
Let [ml be an N-dimensional multi-index indicating the number of basis 

functions used in the approximation on each cell; we employ the same notational 
conventions as those used for the multi-index [n]. 

We let H[m] be the subspace of H such that for any v E H[m], vj2, is in 
the span of {Bi, Bi, . ., Bi } 

Given [m] and any function v in H, @[m](V) is defined to be the function 
in H such that [m] (V)li = Mi(vI1i). Thus, @[m](.) is the projection of H 
onto H[m]l'. Lim[m][c1]1 II@jmQ(v))IH = 0. 

Let 

G[n][m] = {u E G[n]: ul = b } B 
k=I 

which is a finite-dimensional space; the moment collocation requirements are 
met by requiring that certain linear equations hold among the bk. 

The bilinear form a(u, v) can be extended to H; its restriction to nk iS 
represented as a(u, V)k . Variational methods allow us to approximate the solu- 
tion by obtaining the function u in D[n][m] D[n] n G[n][m] that minimizes 

a(u, u) - 2(f, u) 

over all u E D[n][m]. 
If we use the Schauder basis on each cell ik, then 

N 

a(u, u) - 2(f, u) = [a(u, U)k - 2(f, U)kl 
k=l 

N - mk mk mk 

b= s biaBk .)k B -2Z b(f, B)k]. 
k=l Li=' j=l i= 

This quadratic form is to be minimized subject to the moment collocation 
constraints. This is done by adding terms of the form 

-)4J((Yij(U), 0w')ii - (yji(u), wqI) j) q nij, 
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and 

-qiq0((YiO(u) (q?)io - (g, I()OiO), q = 1, ...,niO 

to the quadratic form for each interface Fij where -4 J is a Lagrange multi- 
plier. This converts the problem to that of finding the unconstrained minimum 
of a function F(b, A), which produces a system of linear equations of form 

(c MT)(b)(f) 
( W ( -A) (g 

If the selfadjoint elliptic equation is of Helmholtz type, with Ao > c > 0, 
matrix C consists of symmetric positive definite blocks along the diagonal and 
is zero elsewhere. Each block corresponds to a cell, and the number of basis 
functions used on the cell is the number of rows of a block. 

The vector containing the coefficients to be used with the basis functions to 
obtain the approximation is b. 

Entries corresponding to the right-hand side of the elliptic equation Eu = f 
are represented by f. 

The rectangular matrix M, which we call the matrix of moment collocation 
rows, consists of a band of blocks, with zeros below the band; it is sparse above 
the band. In [25] it is shown that the rows of M are independent if the total 
number of basis functions used in the approximation is sufficiently large. 

The Lagrange multipliers A4j used to enforce the linear moment collocation 
requirements, expressed here as Mb = g, are represented by A. 

The vector g consists of zeros where )iJ is the Lagrange multiplier; where 
Rio is the Lagrange multiplier we have entries dependent on the boundary value 
g 

Let Dij u represent the "co-normal" derivative of u relative to Fij. This 
is defined for sufficiently smooth u as follows: If n = (ni, n2, ... , nK) is 
the unit normal to Fij (pointing outward relative to the interior of Qi), then 
Dniju EK q yij(ApqDqu)np . Results in [24] show that Dniu is approximated 
by Ek{Iak 4'k 

The estimates establishing convergence for the inhomogeneous Dirichlet 
problem are based on the following assumptions: 

(1.2a) We assume that Aij(x) E HI(Q) with DkAij(x) E Loo(Q) and that 
the Aij(x) are Lipschitz continuous on Q. We suppose that Aij(x) = Aji(x) . 
We assume that there exists c > 0 such that EKj Aij(x)zizj > C EKZ I Zi for x 
in Q and any zi in R. We assume that Ao(x) E Loo(Q) and Ao(x) > c > 0. 
(We show that this last assumption is not necessary in Lemma 1.2 below.) 

(1.2b) We assume that f E L2 (Q) and that the boundary data g is in 
H3/2(rFo) for each Fio . 

Under assumptions (1.2a) and (1.2b), the following convergence result is 
shown in [24] and [25]: 

Theorem 1.1. Suppose that the solution u to (1.la), (1.lb) is in H2(Q). Let 
nf denote the largest number offaces Fij of any of the N cells. Let M be 
a constant such that a(v, v) < MlV IIH2 and c be a coercivity constant such 
that CIIV II2 < a(v, v). Denote by CT the maximum of the "trace constants" 
Ci1 . Let W be an upper bound for the squares of the L2(Fij)-norms of the 
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collocation weightfunctions wpJ usedfor collocation on Fij and let mc represent 
the largest number of collocations used on all the faces of any cell. Suppose that 
Un, mIdenotes the approximation obtained by solving the linear system described 
above. Then 
(2) cilu - Un,r m/H < nfINCTmax{/llg/,.J(DniMu)/lliI} 

+ M 1 + 2(l/) C2Wmc// WM1[m] (U) IIH 
A slight alteration of the proof also provides the following estimate: 

c/ u- Un,rmIIH < 2nfCT 11E9llnXJ(D II} 

+ M 2 1 +2(l/A)C2Wmc//j[m](u)/IIH 

Lemma 1.3 below describes ,u and a method for obtaining its value and 
shows that Wmc can be replaced by nf . 

The dependence of the error on the solution u is expressed in the two terms 
/1r[m](u)//H and /.-n,'jJ(Dniiu)//Ii. The second terni represents the L2(Fij) norm 
of the residual of the normal derivative of the solution u that is not in the span 
of the first n1j weight functions used for moment collocation on the interface 
IFij. We present estimates of these two errors for a polynomial implementation 
in the next section. 

Our first new result is that we need not require that the operator is of 
Helmholtz type, so that there is some c > 0 such that Ao(x) > c; Ao(x) 
can be zero. We show that under mild restrictions on the weight functions Co4j 
Poincare's inequality llvllo < C//Vvllo for some constant C holds over the 
space Go[n]; the result then follows from the ellipticity assumption in (1.2a). 

Lemma 1.2. For u E H, the distribution Vui exists in L2(Qi) for each i, 
i = 1, . , N. (We use the symbol Vu to denote the function defined in this 
manner for each cell.) If [n] is sufficiently large so that for each Fjj there is 
some k < n1j such that f.j wOk dF $ 0, then there exists some constant c > O 
such that for all u E Go[n], //VU//2 > C[//VU//2 + //UI/2]. 
Proof. If there is no such c > 0, then there exists some sequence um in Go[n] 
with //Vur 1// + //u //2 - 1 such that IIVum//g -+ 0. Since, for LPC1 domains, 
the embedding H - L2(Q) is compact [261, for a bounded sequence um there 
is a subsequence um(i) such that um(i) converges strongly to some u in L2(n). 

Since Vum(i) converges strongly (to zero) in L2 (Q), um(i) converges strongly to 
u in H (and Vu = 0 as a distribution). GO[n] is closed in H by the continuity 
of the trace operator. Thus, u E Go[n], Vu = 0, and //u//2 = 1/Vu//2+//u//2-12 
Since //Vu//0 = 0, u has higher distribution derivatives (equal to zero) of any 

order, so, by the Sobolev embedding theorem, u can be taken to be continuous 

on each ni. The derivatives of u are all zero on each cell; hence u must be 
some constant K, on each cell QL. 

For any cell Qi with an external boundary face FjO, for the (wio such that 

4iO dF $ 0 we must have 

0 = (y10u) , WiO)jo = (Ki, W?iO = Ki joo dF. 
rio 
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Hence, Ki = 0. Similarly, for a cell Qj adjacent to Qi, 

i ~~~~~~~~~~~ij 

so K1 = 0 also. Extending this argument throughout Q, we see that all Kj are 
zero; hence u 0_ . Yet Jlul12 = 1 . This contradiction establishes the result. D 

The parameter ,u appearing in Theorem 1.1 is the smallest eigenvalue of 
M'/MIT, where M' is the array of collocation rows, assuming that the basis on 
each cell Qi is H1 (Qi)-orthonormal . It depends on [n] and [m], the domain 
decomposition and the choice of bases {Br} and {a4o'}; it is independent 
of the elliptic problem. From [25], for fixed [n], 1/j is nonincreasing for 
[m'] > [m]. The following lemma describes a way to obtain ,u that does not 
assume that H1 (Qi) is orthonormal and improves the estimate in Theorem 1. 1. 

Lemma 1.3. Suppose that M and C are the matrix components of the linear 
system obtained by approximating the solution to the Helmholtz problem -Au + 
u = f . Then k is the smallest eigenvalue of MC-'MT. The parameter ,u is 
independent of a linear change of bases {Br} and any change of basis {o'J} 
using an orthogonal matrix. If ,u is calculated relative to any basis {Ct4j} that 
is L2(Fij)-orthonormal, the product Wmc in Theorem 1.1 can be replaced by 
nf, the maximum number of C1 faces of any cell. 
Proof. For any cell Qr, given a basis {Br }, k = 1, ... , Mr, the Gram-Schmidt 
process allows us to construct an HI (Qr)-orthonormal basis {Ejr} expressed 
in terms of suitable coefficients gkrj as Ejr = E=I gkrjBk Let the matrix 

(gkrj) be denoted by Gr. If Cr is the matrix ((B[, Bj),r), then GTCTGT = 
((E[, Ej)i,r) = I, the identity matrix. 

The collocation rows for each cell Qr relative to the basis {Ejr} are of the 
form 

( (r(E~r) , (ri) (Yri(ED , ,rl)) , ... , (Yri(Er'), .)r)) 

which we denote by M'. In terms of the original basis {Bk}, this row is 

(Yri 

(BgkI 

r 
) 

r) ) 

ri 

(2'ri(BD, \YrL~~~~~~~~m), q r ~ r 
(Yri ( gkrmBkr c fq ) 

((Yr (Br) , ,r') (Yri (Br) , ,ri),.., (ri(m (Or )Gr 

If Mr has rows ((Yri(BI), (qi) (Yri (B2), qii) ... , (Yri (Bm), rqi)) this is ex- 
pressed as a matrix equation as M' = MrGr 

The proof generalizes the two-cell case, where M' has the form 

M0lo 0 MIlG 0 M?0 0 
M/2 M = M12GI M21G2 = M12 M21 0 G 

0 M/20 0 M20G2 0 M20, 

Denote the first matrix by M and the second matrix by G. Thus M' = MG. 
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Now ,u is the smallest eigenvalue of MIM'T = [MG][GTMT] = M[GGT]MT. 
Further, GTCG = I, so C - (GT)-lG-1, and C-' = GGT. Thus, MIMIT 
M[GGT]MT = MC- l MT. 

A straightforward argument establishes that the matrix MC-IMT is in- 
variant under a linear change of basis {Bk}. Any change of basis {f4O} 
under an orthogonal matrix K expresses MC-lMT as (KM')C-'(KM')T = 
KM'C-'M'TKT, where M' is the array of collocation rows relative to the al- 
tered collocation weight functions replacing {co'j} . The matrix MIC-IMIT has 
the same eigenvalues as MC-IMT since K-' = KT. 

To complete the proof, we can extend the argument for one cell Q with 
one C' boundary F, where we approximate a solution to the homogeneous 
boundary value problem. Let 9:(v) denote the H-orthogonal projection of 
v E GO[n] onto GO[n][m] _ GO[n] n H[m]. The argument in [25] requires that 
we majorize llv - 9'm(v)lli by some constant times JJd'[m](V)IIH . We assume 
that {Bk} is H' (Q)-orthonormal. From [25], for the one cell, one boundary 
case, liv - 95mv)Il2 - Ildim](V)IIJ + aAlaT, where A = MMT, and 

a -((y'([m] (V)), c01 ), 
I 

. *, (2'Q[m](V)) cI))n 

The parameter u is the smallest eigenvalue of A, so aA-laT < (1/t)aaT. We 
assume that {coj} is L2(r)-orthonormal, so -a is the vector of the first n 
Fourier coefficients for M[m] (v) and aaT is the square of the magnitude of the 
projection R of y(@j[m](v)) onto the span of col k =1,...,n. 

Thus, 

IIV __,E7m(V)112 < Ill$m]_(V 2I + (l1#)1I_WI12 
? ll@irni(V)IIH + (pl/,)lly($iri(v ))ll12 

? 
IISii(V ) IIH + (1/Ju)C2 IIIj[m] (V) IIH 

where CI0 is the trace constant. 
The argument for a general cell decomposition concludes as in [25]. D 

It is proved in [25] that M is of full rank if the total number of basis func- 
tions is sufficiently large. Our polynomial implementation presented in the next 
section can produce approximations that are continuous. However, in this case 
M is often not of full rank, for we use the same number of collocations on each 
Fij and the system of equations may be overdetermined; more collocations are 
used than the minimum necessary to force continuity. Theoretically, we should 
eliminate just enough rows of M so that M is of full rank, yet continuity is 
still enforced, allowing us to obtain the approximation or compute ,u for this 
case. This is awkward to do during the construction of the linear system; we 
have set up procedures for eliminating redundant rows of M during the final 
solution of the linear equations. 

We obtain explicit theoretical bounds for all the terms in (2) and (3) for the 
polynomial implementation in the next section, except for 1/,. To estimate 
a bound for 1/,u, we combine theoretical results with experimental data. A 
useful general result about 1/,u is the following: 

Lemma 1.4. Suppose that matrices C and M are constructed to approximate 
solutions to the Helmholtz equation -Au + u = f . The matrices C and C-l 
are positive definite blocks along the diagonal, one for each cell. We confine the 
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Helmholtz operator to each cell Qi and, using the same collocations as those in 
the general problem, obtain pi for each cell. Then 

' 
> min{u} 

Proof. The result for N = 2 generalizes. When there are two cells, C- has 
the form 

(B1 0| 
0 B2J 

and M the form 
(Ml 0) 0 M2J 

The blocks B1 and B2 are symmetric and positive definite. Suppose that x is 
an eigenvector corresponding to the least eigenvalue ,L of MC- I MT . Represent 

x by (x, x2 x3)T, where (xl.x2) has length equal to the number of rows in M1 

and (x2:x3) has length equal to the number of rows in M2 . Owing to the block 
structure of C- 1, 

1uXtX = XTMClIMTx 

= (X,:x2)M B, MT(X,:X2)T + (x2:x3)M2B2MT(x2:x3jT. 

Since 

(X,:x2)M,B,MT(X,:X2)' ? T(xUx2)(xIx2)T = (XIX + X2X2T) 

and 

(X2:x3)M2B2 M2(x2:x3)T ? ,2(X2:X3)(X2-X3)T = i2(X2x2? + X3X3 

we have 

u(x,xI + X2X2T + X3X3) = ,uXTx = xTMC MTX 

= (XI: x2)MTBMT(X,:X2)T + (x2:x3)M2B2MfT(X2x3)T 

>u, (Xlxl + X2X2T) + 82(X2X2 + X3x3T) 

> min{fil, 1U2}(XIXT + 2X2XT + X3XT). 

Thus, 

(XIX( + X2X2T +X3Xr) min{Xu,, /12} ? min{T,, /i2} * 

I xx + X2X2T + X3xf) 

2. ERROR ESTIMATES FOR POLYNOMIAL IMPLEMENTATIONS IN R2 AND R3 

We have written programs that produce approximations to solutions of prob- 
lems with domains in R2 [25]. We accommodate four types of cells. Cells can 
be parallelograms or triangles in any orientation. Two kinds of cells with one 
curved (external) boundary segment are accepted; the first has one straight side 
and one curved side; the second has two straight sides and one curved side. 

Legendre polynomials are used to generate an L2-orthonormal basis for a 
square, which provides a basis for any parallelogram by the use of affine trans- 
formations. An L2-orthonormal polynomial basis has been contrived for tri- 
angles. Our software currently generates up to 66 basis functions for any cell, 
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giving a full tenth-degree polynomial basis. These two bases are adapted for 
use in the two types of cells with a curved boundary segment. We use Legendre 
polynomials for the weight functions Cak . Our error estimates for domains in 
R2 assume that the cells are triangles or parallelograms. 

For domains in R3, we confine our attention to tetrahedral or parallelepiped 
cells. In [24] we describe a method for using Legendre polynomials to con- 
struct an L2-orthonormal basis for a standard cube and propose a method for 
constructing an L2-orthonormal basis for a standard 3-simplex; these basis func- 
tions are currently being computed. Affine transformations can carry such bases 
to any parallelepiped or tetrahedron in 1R3. The bases for triangles or parallelo- 
grams can be used to provide L2-orthonormal collocation weight functions for 
the faces of such cells. 

Our polynomial implementation of the algorithm includes a version of the 
h-p finite element method [4, 6] as a special case. For example, suppose our 
elements are in 1R2. If we use polynomials of degree less than or equal to p for 
the basis in each cell and choose the first p + 1 Legendre polynomials for collo- 
cation weight functions on each interface Fij, our approximation is continuous 
throughout Q, since the difference of the traces of the approximation on either 
side of any I7ij, if nonzero, is a polynomial of degree at most p, yet the dif- 
ference must be orthogonal to the Legendre polynomial weight functions Cok 
for k < p + 1 . Since our variational principle is the same as that of the finite 
element method, our approximation is exactly that of the finite element method 
as described in [6], with boundary data obtained by the L2(FiO) projection onto 
the span of the pth-order collocation weight functions. The h-p method de- 
scribed in [4] can be implemented with a small modification of our algorithm. 
(This requires that we replace two moment collocations on each boundary edge 
with point collocations at the end points of the edge.) For parallelepiped or 
tetrahedral cells in JR3 we would need (p + 1)(p + 2)/2 collocations on each 
interface to force continuity of pth-order approximations. 

Our method is more general than the usual finite element p-method, for we 
can choose the number of moment collocations, say, in 1R2, to be less than p + 1 . 
For domains in 1R2 we use the same number q + 1 of moment collocations on 
each interface, corresponding to moments involving polynomials of degree q 
or less. 

To obtain error estimates in terms of p and q and the cell diameter h, we 
use the values for the trace constants Cij that are given in [24]. The results are 
the following: 

If the cell is a parallelogram, Cij < V /sin 6+ 1/1, where 0 is the angle 
made by two adjacent sides of the parallelogram and, if the base is Fij, 1 is 
the height of the parallelogram. If the cell is a triangle, Cij < V2/ sin 0 + 4/1, 
where 0 is the smallest angle in the triangle and, if the base of the triangle is 
Fij, / is the height of the triangle. Let h represent the diameter of a triangle 
or parallelogram. For later estimates, for any particular problem, we define K1 
to be h/ min{l}, where the minimum is taken over all altitudes of triangular 
cells and all heights of parallelogram cells. Thus / > h/K1, so that 1/1 < K1 /h . 

If the cell is a parallelepiped, Cij < /1/ detN + 1/1, detN= I det(n n2 :n3)I, 
where ni, n2, and n3 are unit normals to the sides of the parallelepiped, and 
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1 is the smallest height of the parallelepiped relative to any base. If the cell 

is a tetrahedron, Cij < 7/detN+ 14/i, det N = min l det(nl:n2 n3)1, where 
ni, n2, and n3 are any three of the unit normals to the sides of the tetrahedron, 
and 1 is the smallest height of the tetrahedron relative to any base. 

We can be more specific about the dependence of ,u on the size of a cell with 
the use of the following lemmas: 

Lemma 2.1. For the bases and types of cells described above, the values for ,u for 
a single cell are invariant under translation or rotation of the cell. 

The proof is straightforward and can be found in [24]. 
If ,u is obtained for a cell, and the cell is scaled by a factor h (h < 1), so that 

a side of length 1 becomes a side of length hl, we expect that the associated 
Ath is generally greater than or equal to hp. For triangles, parallelograms, 
tetrahedra, or parallelepipeds, this is the content of Lemma 2.2. 

Lemma 2.2. Let bases for triangles, parallelograms, tetrahedra, or parallelepipeds 
be obtained from bases for the standard simplex, square, 3-simplex, or cube using 
an affine transformation of the form y |-- xo + Ty. Assume that a standard basis 
{Bi} is L2-orthonormal. Let D denote the matrix with i - jth entry equal to 
the integral of (VBi)T T-1 (T-1 )T (VBj) over a standard cell. The (Helmholtz 
problem) matrix C for the image of a standard cell is,of theform I + D. Suppose 
that JI is the smallest eigenvalue for MC-1 MT. When all sides of a cell are 
scaled by a factor h, h < 1, the matrix Ch is I + (1/h2)D; the matrix of 
collocation rows is Mh= (l/Vh)M, where M is the collocation row matrix 
when h = 1. Suppose that Ph is the smallest eigenvalue of MhCh-1Mh. Then 
Ah > hll. 
Proof. Since C = (D + I) = (D + h21) + (1 - h2)I, we have 

(D + h21)-l = C-1 + (1 - h2)(C-1)(D + h21)-l, 

so 

TIhM(Ch)XMTX = XT( 1 /h)M(( 1I/h2) (D + h21))-1 (1 /V)MTX 
= hxTM(D + h21)-lMTx 

= hxTMC-lMTx + hxTM(l - h2)(C-1)(D + h21)-lMTx, 

(C-1)(D + h21)-l = (D + I)-'(D + h21)-l = ((D + h21)(D + I)) 
= (h 21+ (1 + h2)D+D2)-1. 

The matrix h2l + (1 + h2)D + D2 is positive definite, so 

xTM( -h2) (C-l)(D + h2Iy l2MTx 

is a positive expression. Thus, 

Ah= infXTMh (Ch) MTx > hinfxTMClIMTX = hp, 
where the infimumn is taken over all x of norm 1. El 

We first apply the methods used by Babuska et al. [3, 4] to provide estimates 
for cells in 1R2 that are triangles or parallelograms. Lemma 2.3 is one of the 
estimates used in their arguments. 
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Lemma 2.3. Let I = (-s, s), v E Hm(I), m > 1. Then there exists a polyno- 
mial zq of degree q and a constant C(m) independent of s, q and v such 
that 

liv - Zq IIL2[Il < C(M)smin(m,q+l )q-m lIV IIHm[I1. 

Lemma 2.4. In the polynomial implementation of the CDA applied to triangular 
or parallelogram cells in 1R2 with diameter h there is a constant K1j(m), de- 
pending on m, but not on the solution u or h, such that, if Dn1 u is in Hm (Fi), 
then, with nj_ q + 1 collocations enforced on Fij, we have 

Ik,j9 (Dni,U) lii < Kij(m)(h/2)min(mq+l-mjDn ullHm(j) 

Proof. Legendre polynomials are used to provide collocation weight functions 
on the interfaces in the implementation described above. Hence gn-,' (Dni, u) 
is the L2(Fij)-orthogonal complement to the projection SD of Dniju onto the 
span of the weight functions cok, k = 1,..., n1j. Hence 32 is the w that 
minimizes IlD nj u-wIIij over all polynomials w of degree nij- 1 or less. Thus, 
in this case, IlDniju - -911ii = 19S'iJ(Dniju)Ii i. The interfaces Fij are straight 
line segments, so, using Lemma 2.3, we have IIDniju-IIij<1 ? IDnii u-zqIIii for 
the zq supplied by the lemma (with q = nij - 1), and the result follows. o 

We obtain a more global estimate of the first error term in the constant- 
coefficient case. 

Lemma 2.5. In the polynomial implementation of the CDA applied to triangu- 
lar or parallelogram cells in 1R2, if the coefficients Aij are constant, there is a 
constant K2 depending on Aij, k, the unit normals to Fij and the ratio of the 
sides of any parallelograms, but not on h or the solution u, such that, if u is 
in Hk(Q), then, with q + 1 collocations enforced on each Fij, we have 

, \ ~~~~~1/2 

E iji(Dniju) )1/i2| < K2 ../hfCT(h/2)min(k-2, q+')q-(k-2) 

VrijJ 

Proof. We let m = k - 2. We express Dnij u in terms of the traces of the 
first derivatives of u, the constants Aij, and the unit normals to Fij. Let ci 
denote various constants dependent on Aij, the unit normals to the Fij and 
the multi-index a. Then 

IIDniI uIHm(r1i) = IJc yij(D1 u) + C2yij(D2u) IIHm(rij) 

< E l1c3yij(DaDiu) + c4yij(DcD2u)il 

< CT2 1Z lc3D&Di u + c4DaD2ullf,i < CT2c5 lulHm+2(Q.). 
IaI<m 
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Using Lemma 2.4, we obtain 

E I<,J Dnj U 12j< h/)2 min(m,q #+)-2m EKi2 IDu 
rij 'r,i 

< (h/2)2min(m ,q+l)q-2mC2C6 v IIUI12 q T 6 X, 11 1Hm+2(fl,) 

rij 

N 
< (h/2)2min(m,q+0q-2mC2c6nf E|U|12 

=(h/2)2min(m,q+1)q-2 C T2c6nf 11 U11+2(Q 

If we apply results of Babuska et al. [3, 4] in the style of Lemma 2.4, we obtain 
an estimate of the second error term IId[m](U)IIH that holds for the domains in 
R2 described above and similar domains in R3: 

Lemma 2.6. Suppose that the solution u to the Dirichlet problem is in Hk(Q). 
Suppose that the cells partitioning Q are affine maps of the unit square, standard 
triangle, unit cube or unit simplex, with h representing the maximum diameter. 
Suppose that [m] is large enough so that the basis functions used on each cell can 
generate any pth-degree polynomial. Then there exists a constant K3 depending 
on k and the unit normals to the sides of the cells, but independent of p, h, and 
u, such that 

116[m](U) ||H < K3hmin(k-1,p)p-(k-1) U6n 

The estimates given in the previous lemma combine with the second estimate 
of Theorem 1.1 to yield the following result: 

Theorem 2.7. Suppose Q c R2 is partitioned into N triangles or parallelograms 
(or both) of diameter h or less with smallest angle between the sides denoted by 
0. Let K1 = h/ min{l}, where 1 is any altitude of a triangle or any height of a 
parallelogram (relative to any side). Assume that the Aij and Ao are constant. 
Suppose that q + 1 collocations are used on each interface (corresponding to 
collocations with polynomials with degree < q) and the number of basis functions 
m used on any cell is (p + 1)(p + 2)/2, corresponding to afull pth-order basis; 
p > q. Suppose that the solution u E Hk(Q), k > 2. Then there are constants 
C1, i = 1, ... , 4, depending on the Aij, Ao and the angles of the cells and 
k, and there is a parameter m1 depending on p, q and the angles of the cells 
(and the ratios of the sides of any parallelograms) such that the approximation 
uq , p Un, m satisfies the following estimate: 

||u - Uq,p||H 

< [Cl (l / sin 0 + 2K1 /h)(h/2)min(k-2 ,q+)q-(k-2) 

+ C21 + 16(l/(hui))(l/ sin 0 + 2Kl/h)hmin(k p)p(kI)]uHk() 

A more succinct estimate is 

Iu|-uq ,pIH < [C3(h/2)min(k-3,q)q-(k-2) +C4 /hmin(k-2,Pl)p-(k-l)]IuIIHk 

A similar estimate can be obtained for domains in R3: 
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Theorem 2.8. Suppose Q C R3 is partitioned into N tetrahedra or parallelepipeds 

(or both) of diameter h or less with det N = mink I det(nk:nk:nk)l , where nk, nkJ 

and nk are unit normals to the sides of any tetrahedron or parallelepiped cell Qk. 
Let K1 = h/ min{l}, where 1 is any altitude of a tetrahedron or parallelepiped 
(relative to any face). Assume that the Aij are constant. Suppose that nij= 
(q + 1)(q + 2)/2 collocations are used on each interface (corresponding to col- 
locations with polynomials with degree < q) and the number of basis functions 
m used on any cell is (p + 1) (p + 2) (p + 3)/6, corresponding to a full pth-order 
basis (p > q). Suppose that the solution u E Hk(Q), k > 2. Then there are 
constants Ci depending on the Aij, Ao and the normals to the sides of the cells 
and k, and there is a parameter JI depending on p, q, the normals to sides 
of the cells and the ratios of the areas of the sides of any parallelepiped cells, but 
independent of h and u, such that the approximation uq, p un, m satisfies the 
following estimate: 

IIu - Uq,p|IH 

< [C1 (7/ det N + 14K,1 h)h min(k-2, q+l )q-(k-2) 

+ C2 i + 12(1/hMi)) (7/ detN + 14K, /h)hmin(k- ,P)p-(k-l)]11u 

A shorter estimate is 

IIu - Uq,pIiH < [C3hmin(k-3 x q)q-(k-2) + C4 1/ /Lhmin(k-2,p-I) p-(k-)]I1UIIHk 

As mentioned earlier, sufficient collocations can be used to force an approx- 
imation to be continuous with M of full rank. It follows from the proof of 
Theorem 1.1 [25] that the expression 1I19/ (Dniju)jjjj is eliminated from the 
error estimate for a homogeneous Dirichlet problem with a polygonal domain. 
The estimates of Theorems 2.7 and 2.8 then give 

IIu - UP,PIIH < C4 m1//hmin(k-2,p-1)p-(k-1)11U1Hk. 
For the h-p method, the estimates of [5] give 

IIu - UPIIH < Chmin(k-l,p)p-(k- 1) IIuIIHk 
for the two-dimensional case. Our estimate contains 1/lyl, which depends on 
p and can be large, so our current error estimate does not contain the h-p error 
estimate as a limiting case, and it may be possible to improve our results for 
general p and q when a basis consists of polynomials. 

In the experimental results of ?3 below, the known solution is analytic, and we 
get approximately the same error using our implementation of the h-p method 
and the cell method when continuity of an approximation is not enforced and 
q is about p - 2 or p - 3. We give additional polynomial approximation error 
results for such smooth solutions based on Taylor's series [24] that, except for 

I , are quite specific. 

Lemma 2.9. If v E Cq+I([a, b]), let vq+I denote the (q + 1)st-order derivative 
of v and vq denote the qth-order Taylor series approximation to v around the 
point d - (a + b)/2; then 

llV VJ1'< (b - a)q+l 
jV+110 

hrtesus Vp3 Io ? 2 2(q + n)I or where the subscript 0 of 11 I lb denotes the L2[a, b] norm. 
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If we apply this result in the manner of Lemma 2.4 and use the density results 
of smooth functions in Hk(Q) [26], we get 

Corollary 2.10. In the polynomial implementation of the CDA applied to triangu- 
lar or parallelogram cells in R2 in ?2, if the functions Ai1 in the elliptic problem 
are constant and hij is the length of Fij, then, if u is in Hq+5/2(o), with 
nxj=q+lIfor each rij we have 

-l.n9'j(D ,1u)ll; < [hqtl/[2+3/2(q+ +)!(Dnj 

where (D.1j u)q+l represents the (q + 1)st tangential derivative of (DiJ. u) on Fjj 

From [24], HI (Q) error estimates for the Taylor series approximation on 
any convex or star-shaped domain in 1R2 or R3 are the following: 

Lemma 2.11. Suppose Q is any convex domain (with xo at the center of a 
largest diameter) or Q is a star-shaped domain (with respect to xo) in R2 or 
Rk3. Let h represent the diameter of Q; suppose R = h/2 if Q is convex or 
R = h if Q is star-shaped. Suppose that v E CP+2(Q) and vp is the Taylor 
series expansion of v of degree p around x0. Let IV IHk denote the seminorm 
[Z,ja=k IIDavjI2]1/2. Then 

(i) If Q C R 

IIV _ VPII2(< 
R2P2P-) ((p R2 

H (1) p(p 1))2'(p+ )(2p - 1)+ 

[ [IV IHP+I]2 + - + 1i) [IV IHP+2 12] 

(ii) If Q C R3, 

liv -VpllH(a) ? 2((p3- /))2( + HP 2 [IVIHP+2]J 

Since the space of polynomials of degree p is finite-dimensional, we can use 
the density of smooth functions in HP+2(Q) and a compactness argument to 
establish the existence of a polynomial vp of degree p for any v E HP+2(Q) 
that satisfies the estimates of Lemma 2.1 1. 

We assemble these results to obtain an error estimate for smooth solutions for 
the case where a doman in 12 is partitioned into N triangles or parallelograms 
(or both). Using Stirling's formula and the method of Lemma 2.4, since we can 
take R = h/2, we obtain the following: 

Theorem 2.12. Suppose Q2 c 1R2 is partitioned into N triangles or parallelo- 
grams (or both) of diameter h or less with smallest angle between the sides 
denoted by 6. Let K1 = h/ min{l}, where I is any altitude of a triangle or any 
height of a parallelogram (relative to any side). Assume that the Aij are con- 
stant. Suppose that q + 1 collocations are used on each interface (corresponding 
to collocations with polynomials up to qth degree) and the number of basis func- 
tions m used on any cell is (p + 1)(p + 2)/2, corresponding to a full pth-order 
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basis. Suppose that the solution u E HP+2(Q), p > 1. Then 

cllu - un,mIlH < 2.2 N(1/sin6 + 2KI/h)Fl (u, h, q) 

+ .29M,1 + 16(#1/(h,))(1/sinO +2Ki/h)F2(u, h, p), 

where ?I(u, h, q) = hq+l(.73(q + 2))-(q+3/2) maxjj(D.,ju)q+Ijjjj and the maxi- 
mum is taken over all Fjj, and 

F2(u, h, p) 

hP(.52p)-P((h2/(8p2) + 1)[[IUIHP+I]2 + 4(p- l)(p + 1)) IuIHP+2]]) 

where IUIHk represents the seminorm taken over the entire domain Q. 

The parameter JI has the properties described in Theorem 2.7. 
Note that if we are subdividing the unit square into cells of side h, the 

number of cells N - 1 /h2 . Owing to the decrease in the size of Fjj, we might 
expect 1 (Dij u)q+l 11j to decrease by a factor h1/2. Then the h dependency of 
the first error term is Ch -32h1/2hq+I = Chq. This can be made rigorous for 
any polygonal domain by the methods of Lemma 2.5. The h dependency of 
the second error term is ChP-' . 

For parallelepiped or tetrahedral cells in 1R3, results from [24] concerning 
L2 estimates derived from Taylor's series applied to the interfaces of such cells 
establish the following lemma: 

Lemma 2.13. Suppose that a domain in 1R3 is partitioned into parallelepipeds or 
tetrahedrons and the collocation weight functions on the interfaces are polynomi- 
als of degree q or less, and the diameter of Fjj is h. Let nij = (q + 1)(q + 2)/2. 
If u E Hq+3+112(Q), then 

llgn.jJ (Dnij u) 11 Ij 

< h 2qll(2 U)+I 1j]2+h2/ 42)[11(D U)q+2 11,j]2], 
-2q+3 (q + 1) (q!) 2 11 lu]2 + 

where [IlvkIjIj]2 denotes the sum of the L2 norm (squared) of the kth-order 
tangential derivatives of v on the 2-dimensional interface Fij. 

We assemble the previous estimates and the estimates of the trace constants 
to obtain the following result for domains in R3 with the help of Stirling's 
formula: 

Theorem 2.14. Suppose Q c 1R3 is partitioned into N tetrahedra or paral- 

lelepipeds (or both) of diameter h or less with det N = mink I det(ni:n:nM3)I, 
where nk, nik, and nk are unit normals to the sides of any tetrahedron or paral- 
lelepiped cell Qk. Let K1 = h/ min{l}, where 1 is any altitude of a tetrahedron 
or parallelepiped (relative to any face). Assume that the Aij are constant. Sup- 
pose that nij -- (q + 1)(q + 2)/2 collocations are used on each interface (corre- 
sponding to collocations with polynomials up to qth degree) and the number of 
basis functions mn used on any cell is (p + 1)(p + 2)(p + 3)/6, corresponding to 
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a full pth-order basis (p > q). Suppose that the solution u E HP+2(Q). Then 

cllu -un,mIIH < .63 N(7/detN+ 14K/h)?'(u, h, q) 

+.29M/1 + 12(1/(hMi))(7/detN + 14K,/h) 2(u, h, p), 

where 

?1(u, h, q) 
- h(q+l) (.52(q + 1))-(q+l) max[[II (Dn1U)q+l 11j]2 + 2)[11 U)q+211,j]2]1/2 

the maximum being taken over all Fij and 

2(u, h, p) = hP(.42p) (P 1/2) { (k2 + 1) [[IUIHP+1]2 + 2 [IUIHP+2]2] } 

where IUIHk represents the seminorm taken over the entire domain Q. 

The parameter JI has the properties described in Theorem 2.8. 
Note that if we are subdividing the unit cube into cells of side h, the num- 

ber of cells N - 1/h3. Owing to the decrease in the size of rij, we expect 

II(Dnij u)q+l 1j to decrease by a factor h. Then the h dependency of the first 

error term is Ch-2hIhq+1 = Chq, and this can again be made rigorous for any 
polyhedral domain. The h dependency of the second error term is ChP-1 . 

We return to a consideration of the parameter 1/,u. Recall that when suf- 
ficient collocations are used so that an approximation is continuous (and M 
is still of full rank), the first error term can be deleted, and the estimate of 
Theorem 1.1 for a homogeneous problem with polyhedral domains is 

cIu - Un,m IIH < M 1 + 2(1I/l)Cdnlj[m](u) IIH- 

Since Ild[m](U)IIH makes no reference to the continuity of the solution across 
interfaces, estimates of the parameter 1/,u provide an indication of the effect 
of enforcing continuity in this case. 

We confine our discussion to triangular or parallelogram cells. For a fixed 
number q + 1 of collocations, it is shown in [25] that 1/,u is nonincreasing as 
the number m of basis functions used on each cell is increased. Lemma 1.4 
shows that knowledge of a value for 1 /,u for low values of m corresponding to 
approximations of order close to q for one cell of various types would give us 
effective upper bounds for 1/,u. Lemmas 2.1 and 2.2 show that, for triangles 
or parallelograms, it suffices to estimate 1/,u if a cell is rotated and scaled so 
that a largest side is on the unit interval on the x-axis. The ,u obtained when 
a largest side is of length 1 is denoted by JI and we present some sample 
empirical estimates for 1/J,L below. 

Our software has the option of computing IIyij(un,m)-Yii(un,m)Jiij and 1/M 
in any test, yielding the following results. A domain decomposed into a triangle 
on top of a square requires that q = p to force internal interface continuity. 
However, computations for just one square or triangle show that continuity 
of an approximation with zero boundary data is enforced when q < p. For 
example, in all tests with p < 20, for squares and even p, collocations of 
degree q = p - 2 on three sides and q = p - 1 on the fourth suffice to force 
continuity. For odd p, q = p - 2 on three sides and q = p - 3 on a fourth 
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q values for p 
4 5 6 7 8 9 10 

1 12.93 12.93 12.88 12.88 12.85 12.85 12.84 
2 99.19 85.80 22.35 22.35 22.07 22.07 21.91 
3 67.43 67.43 34.65 34.65 33.84 
4 500.3 340.4 71.25 71.25 49.78 

q values for p 
8 9 10 11 12 13 14 

5 232.2 202.8 83.42 83.42 67.57 67.57 65.20 
6 1438. 880.7 179.9 174.4 101.0 101.0 87.92 
7 566.7 462.4 174.4 174.4 122.7 
8 3154. 1823. 389.0 356.9 187.7 

q values for p 
12 13 14 15 16 17 18 

9 1137. 892.6 333.4 324.8 209.0 209.0 175.9 
10 5895. 3287. 727.9 645.6 322.7 322.7 235.9 
11 2013. 1542. 585.2 553.0 336.7 
12 9913. 5393. 1232. 1069. 530.0 

FIGURE 2.1. Values for 1 l/uI with q + 1 collocations and basis 
order p 

force continuity. The largest value for 1/IuI for squares and p < 10 is 6, 583; 
p < 20 has maximum 1/4uI > 65, 000. For triangles and odd p < 9, q = p - 1 
forces continuity; p even and less than or equal to 10 requires q = p - 1 on 
two sides and q = p - 2 on a third. Some experimental results for squares are 
shown in Figure 2.1. 

For any choice of q, values of 1/J,' are initially high and then drop fairly 
rapidly as p increases. Likewise, a glance at the columns of Figure 2.1 shows 
that, for any choice of p, values of 1/pui drop rapidly as q decreases. Based 
on a data set that extends the results in Figure 2.1 and various simple power 
and exponential multiple regression models to approximate the dependence of 
I/4uI on p and q, the best suggests that 

1/1l = 38.5q2.14(p - q - 1-1.58 

for even q from 2 to 12 and p = q + 2, ... , q + 7. (The coefficient of deter- 
mination R2 for the logarithmic relationship is R2 > .953.) 

When we compare the values of 1 / I' for q with p = q + 2, the logarithms 
of q and I/#u, are highly correlated in the computations for even q from 2 
to 20 (r > .999). The estimate is l/jz# = 13.3(p - 2)2.67. A similar result is 
obtained for odd p, with q set to p - 3. 

Computations for a general parallelogram with base 1 give the same sort of 
empirical estimates; 1 /4u1 is proportional to 1 / sin 0, where 0 is the acute angle 
of the parallelogram. For the standard simplex, empirical estimates of 1 /JLI are 
dominated by 21 (p - 1)2. Although the first error term is eliminated when q 
is sufficiently close to p so that the approximation is continuous, the results 
in the next section suggest that an approximation of similar accuracy can be 
achieved if we relax the requirement of continuity to some extent by decreasing 
q (which decreases the size of the system of linear equations needed to obtain 
the approximation). This results in a strong decrease in 1 /jz, which is balanced 
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by the growth of the first error term; the best empirical results occur when q is 
p - 1 or p - 2 (for triangles) and p - 2 or p - 3 (when cells are rectangles). 
Note that in Theorem 2.12 the q error dependency is C(.73(q+2))-(q+3/2) and 
the p error dependency is C(.52p)-P (disregarding l/,u); these are about the 
same if q = p - 2. 

3. METHODS FOR SOLVING THE LINEAR SYSTEM 

AND EXPERIMENTAL RESULTS 

We first briefly describe the linear algebra used to solve 

(C MTb)( f) 

The basic algorithm is to use the Schur complement of C; first solve 

MC-MTA = _MC-If+ g 

for A, and then solve Cb = f + MTA for b. (See also [25].) Each of these 
systems is symmetric semidefinite. Furthermore, C is block diagonal with block 
sizes at most 66 x 66 for p < 10, so it is easy to form MC- I MT, using Linpack 
10] to calculate the Cholesky factors of each block of C. 

There are several potential difficulties with this approach. First, if there are 
many cells, then MC- MT can be large. However, MC- MT is sparse since 
the only nonzeros in MC- MT correspond to Lagrange multipliers associated 
with interfaces of adjacent cells. For example, for 256 rectangles with p = 10 
and q = 10, MC-IMT is a 5984 x 5984 matrix with 1.2% of its entries 
nonzero. In our implementation we used Sparsepak [13] to solve MC- MTA = 
-MC-If + g. In the p version of the finite element method, the matrix that 
results after static condensation [23] has a structure similar to MC-1MT. If 
q < p - 1 , then our system will be smaller than the corresponding finite element 
system. 

Following Lemma 1.3, we discussed a second potential difficulty. If q is al- 
most p, then some of the moment constraints may be redundant and MC -I MT 
is singular, so we must delete some rows of M. When we detect that a row of 
M is numerically dependent on other rows, it is easy to show that an equiv- 
alent procedure is to set the corresponding component of A to zero. This is 
done with a minor modification of Sparsepak: if a diagonal entry in the LDLT 
factorization [13] of MC- MT is sufficiently close to zero, we set the relevant 
component of A to zero. 

A third potential difficulty occurs when we treat Poisson's equation. Lemma 
1.2 shows that our methods can be used in this case, but the diagonal blocks 
comprising C are singular. As discussed in [25], iterative refinement [14] can 
be used to overcome this difficulty. In all the cases that we tried, four steps 
of iterative refinement sufficed to provide solutions to Poisson's equation that 
are as accurate as the solution to the Helmholtz equation. In most cases one 
or two steps were sufficient. Iterative refinement is also useful if C is poorly 
conditioned but not exactly singular; for example, when Ao(x) in (1.1) is small 
but not identically zero. 

Our test problem is adapted from sample problem 53 of ELLPACK [22]. We 
seek an approximate solution to the Dirichlet problem 

-Au + u = f 
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q n = number of cells: values of h. 
n=l:h=l. n=2:h=1. n=8:h=1. n=8: h-. 5 

1 16.61 13.27 10.76 21.42 
2 26.28 19.89 17.03 33.97 
3 43.18 33.99 28.92 57.77 
4 59.67 45.26 40.54 81.03 
5 83.37 65.42 57.52 115.0 
6 106.7 81.06 76.99 153.9 
7 143.4 119.6 111.8 223.5 
8 197.7 193.2 188.6 377.1 

FIGURE 3.1. Values for 1/,Uh when p = 10 

on the unit square, where the boundary conditions and f are obtained from 
the intended true solution 

u(x, y) = exp(xy) cos(7ry) sin(7r(x - y)). 

We use uniform meshes, with as many as 128 triangles similar to the standard 
simplex and 256 squares. 

Our first tests concern values for 1/,u, which only depends on the decom- 
position of the domain and is independent of the problem. Lemma 1.4 shows 
that the largest value for 1/,u for a single cell gives an upper bound for 1/,u 
for multi-cell meshes. This result is demonstrated in Figure 3.1, where the first 
three columns give decreasing values for 1/,u for various values of q using 
one triangle, then two and eight triangles partitioning a square. The order of 
the basis is p = 10, and side h = 1 in these tests. Lemma 2.2 proves that if 
IUh is the value for a cell with sides scaled by a factor of h, then I'h > h#,I, 
or h(l/lzh) < (1/nl). A test of this result is shown in the last two columns of 
Figure 3.1, where we show results for eight similar triangular cells when h is 
1 and then .5. The entries in the fourth column are almost exactly twice the 
entries in the third, suggesting that the estimate of Lemma 2.2 is quite tight. 

Tests were made to obtain approximation errors for various values of p, q 
and h. The difference between the true solution and the approximation was 
calculated on a uniform 41 x 41 grid; the squares of the "L2" ("H1") errors 
are evaluated using ELLPACK's technique of using the average of the squares 
of the differences (and the squares of the differences of the derivatives). 

We show three sample error computations. The first, in Figure 3.2, relates 
the logarithm of various errors and p for various values of q. We use two 
domain decompositions: 32 congruent triangles and 16 congruent squares. We 
note two results: first, for any fixed value of q, accuracy is not improved by 
increasing p beyond a certain point, and second, for fixed q, optimal accuracy 
appears to occur when p = q + 2 for regular triangular cells and p = q + 3 for 
regular square cells. 

The true solution is analytic; we test the error estimates for such solutions 
given in Theorem 2.12. Disregarding 1/j,z, the theoretical p dependency 
of the "H1" error is of the form C(.52p)-P, and the q dependency is 
C(.73(q + 2))-(q+3/2), with the C 's depending on various seminorms of the 
solution. Thus, we plot the logarithm of various errors against p logp, giv- 
ing the results shown in Figure 3.3 for various values of q. We again use 32 
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FIGURE 3.2. A comparison of errors and p for various values of q 
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FIGURE 3.3. Log of errors vs. p lnp for various values of q 

triangular cells and 16 square cells, so h is the same for both examples. For 
triangular cells, when q = p - 1, the empirical relationship is 

(Hl-error) = .81(.63p)-P, 

with correlation r > .99 between values of the log of the error and the log of 
the approximation. For square cells, when q = p - 2, the relationship is 

(Hl-error) = .84(.59p)-P, 

with r > .99. 
A third test is concerned with the h dependency of the approximation. We 

collect error evaluations for various decompositions into square cells, ranging 
from one cell to 256 cells. Theorem 2.12 suggests that the h dependency of the 
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FIGURE 3.4. Log of errors vs. log of h for various values of p 

H1 errors is of the form C hq + C2hhP-. We compare the log of the errors and 
log of h for various values of p, with q = p - 2, in Figure 3.4. 

The (approximate) slope of each line gives the exponent for h ; this is given in 
Figure 3.4 beside each value of p . When q = p - 2, the theoretically dominant 
term should be C1 h = C1hP-2, yet the empirical results give slopes close to 
p - .5, suggesting that, for parallelogram cells, and q = p - 2, we may be able 
to improve the error bound. For p = 10, the graphs are not straight for small 
h, owing to the effect of computer arithmetic, and the slope listed omits the 
smallest h. However, we do calculate approximations with maximum errors 
as small as 10-14 with relative machine precision = 2 x 10-16, which suggests 
that our algorithms are quite robust. 

In summary, our polynomial implementation of the cell discretization algo- 
rithm has resulted in an alternative method for implementing the p or h-p 
finite element method, with the option of relaxing the requirement that approx- 
imations be continuous across cell interfaces. In our experiments, some discon- 
tinuous approximations to smooth solutions have errors similar to continuous 
approximations. 
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